
Slowly varying nonlinear waves in a warm plasma stream

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 2113

(http://iopscience.iop.org/0305-4470/14/8/032)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) 2113-2119. Printed in Great Britain 

Slowly varying nonlinear waves in a warm plasma stream 

R J Gribben and E J Parkes 
Department of Mathematics, University of Strathclyde, 26 Richmond Street, Glasgow 
G1 lXH, UK 
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Abstract. This paper extends previous work on the propagation of one-dimensional 
nonlinear waves in a cold, collisionless, field-free, slightly non-uniform plasma to the case 
where the plasma is warm. The formulation is as before and the wave modulation properties 
are discussed; here, however, it is necessary to solve an initial value problem for the 
modulation equations by an approximate technique. 

1. Introduction 

In this paper we consider a similar physical situation to that treated previously (Gribben 
and Parkes 1977, hereafter referred to as I), but we now include a pressure proportional 
to n 3 ,  where n is the electron number density. This mild change in the basic equations 
increases enormously the difficulties in their solution. 

The basic uniform solution (essentially that given by Coffey (1971)) presented in § 2 
takes the form of an expansion in amplitude and assumes that no particles are trapped. 
This condition imposes a restriction on amplitude that grows more severe as the 
temperature parameter p(0 s p < 1) increases from zero. 

For the non-uniform plasma considered in § 3, the modulation equations are 
derived as before, but the method now requires that departures from uniformity 
(measured by E )  are of smaller order than that of the amplitude. There are four 
amplitude-dependent families of characteristics of the equations, compared with a 
single family independent of the amplitude in the cold plasma. Two of the characteristic 
speeds coalesce in the linear limit to the linear group velocity. 

In § 4 the strained coordinate method (Parkes and Gribben 1978) is used to solve an 
initial value problem for the modulation equations. Of the choice of four characteristic 
coordinates to strain, the most suitable seems to be the pair which remain distinct at 
small amplitudes. The solution is carried out to include the leading nonlinear effects. 

The principal features of this solution are described in § 5 for a finite, initially 
symmetric amplitude distribution. Whereas, in the cold plasma, the amplitude profile 
propagates with distortion in a symmetric manner relative to the peak amplitude, here 
there is an initial period of asymmetric distortion, although eventually the distortion is 
symmetric. 

2. Uniform waves 

With the notation used in I, the basic equations for the problem can be written as 

an/at + a(nu)/ax = 0,  (1) 

0305-4470/81/082113 +07$01.50 0 1981 The Institute of Physics 2113 



2114 R J Gribben and E J Parkes 

The constant c is zero for the cold plasma considered in I, and here, for a finite electron 
temperature, c = pn-3 is the adiabatic pressure law p a n  ’ with y = 3, where p is the 
pressure. 

Equations (1)-(3) are valid if the wavelength of a wave motion is large compared 
with the Debye length (Bernstein and Trehan 1960), and they also describe the ‘single 
water bag’ model of a plasma (Davidson 1972, Q 3 . 5 ) .  

Uniform nonlinear 2~-periodic  solutions of (1)-(3) are obtained by transforming to 
the wave frame as in I, but here it is necessary to resort to expansions in amplitude. With 
boundary conditions U = Vo, n = N and 4 = 0 at x = 0 we find (cf Coffey 1971) that 

e 4 / m  v: = -a *pl sin ,y + U’, (3 - 4 cos x + cos 2x)p2 /  12 + 0(a3,), 

n / N  = 1 + a ,  sinx +a i ( cos  ,y -cos 2x)p2/3p1+O(ai) ,  (4) 

U/ Vo = 1 - a ,  sin x + a i [ 3 p 1  -2pz cos x + (2p2-3p1) cos 2,y]/6p1+O(a3,), 

where U and x are as in I, a, = a / ( l  - -p) l / ’ ,  p1 = 1 -p ,  pz= 3+p, p = 3 V f h / V i  = 
3 c N 2 / m V i ,  where V,, is the undisturbed electron thermal velocity and p < 1 for 
periodic waves. Coffey (1971) showed that for trapped particles to be excluded 

U‘ < 1 - p / 3  - 8 p 4 / 3  + 2p1/’, 

where 

=Ne2/mEo  and la1 is a dimensionless measure of the maximum amplitude of 
-&$/ax, the electric field. 

The condition (5) implies that the assumed model is only valid for small amplitudes. 
For example, with p = 0.5, (5) gives la1 < 0.0718. Hence the small-amplitude solution 
(4) is appropriate. 

For there to be no secular terms in the solution, the wavenumber k and the 
frequency w satisfy 

( w - k U ) ’ = ~ i  + 3 k 2 V f h  + ~ i w ; p ( P  +15)/6p: + O ( U ~ ) ,  (6) 

where U = V + Vo and V = w / k .  To leading order (6) is the Doppler shifted form of the 
familiar linear dispersion relation for long-wavelength longitudinal oscillations in a 
warm plasma. Unlike the cold plasma stream (I), the nonlinear dispersion relation is 
amplitude dependent and the waves genuinely propagate through the plasma since the 
linear group velocity is aw/dk = U - Vop. 

We now go on to consider the equations satisfied by a,  N, Vo, U, w and k when we 
allow these quantities to vary slowly in the sense that significant changes can occur over 
a large number of wavelengths. 
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3. The modulation equations and characteristic velocities 

The formalism for dealing with the propagation of waves through a slightly non- 
uniform plasma using the uniform solution has been described before (see I). In the 
present case the averaged equations, to first order in A,  corresponding to ( 1 ) - ( 3 )  are 
found to be 

( 7 )  aN/aT + a ( N U ) / a X  = 0 ,  

a a 
-(U + $A* Vo) +-[[3U2 + [3pVi +$A* Vo( U - Vo)] = 0,  
aT ax 

( 9 )  
a a a 

aT ax ax - ( N U )  + - [ N U 2  + $ ( l +  3 p ) A * N V i  + : p N V i ]  - N-(($P2A* V i  ) = 0 ,  

where A* = a i ,  and for consistency A = a 2  must be of larger order of magnitude than 
the parameter E which measures the ratio of a typical period or wavelength to a typical 
time scale or length scale of the modulation. The compatibility condition is 

aklaT + a w / a x  = o (10)  

and w and k are related by w = k ( U -  V o )  and ( 6 ) .  Equation (9) ,  which is not in 
conservation form, may be replaced by 

- ( A * N ' / ~ v ~ ~ : / ~ ) + - [ ( u -  a a V , ~ ) A * N " / ~ V ~ ~ ~  2 1 / 2  I = O .  
aT ax 

To obtain ( l l ) ,  some algebraic manipulation is required, but it can also be derived 
directly using Whitham's averaged Lagrangian method (see Parkes 1980), and can be 
identified as the 'conservation of wave action' equation. 

When p = 0, (6) - (9)  and ( 1 1 )  reduce to the cold plasma evolutionary equations, 
(3.6)-(3.9) and ( 3 . 1 1 ) ,  valid for O<A<1,  of I; here they are subject to the more 
restrictive condition 0 < A << 1 .  

The characteristic velocities of the hyperbolic system of equations are obtained by 
standard methods, although the procedure is considerably more tedious than in the 
corresponding cold plasma case. Writing dX/dT = C = U +  V O Y ,  we obtain 

(Y  +p)'( Y 2  - p ) + A p (  Y + l ) { p  + q(  Y 2 - p )  + ( Y  + p ) [ r  +s( Y 2 - p ) ] }  = O ( A 2 ) ,  (12)  

where p = ( I  + 3 p ) / 4 ,  q = -p (p  + 15)/12p?,  r = ( 3 p  - 7 ) / 4 p 1  and s = 
( - p 2 + 2 0 p  + 4 5 ) / 1 2 p : .  When p = 0, (12)  collapses to Y 4  = 0, corresponding to the 
quadruple characteristic velocity C = U valid for all A in 0 < A  < 1 (see I). To leading 
order in A for p # 0, ( Y  + p)*( Y 2  - p )  = 0 and the linear characteristic velocities are 
U - Vop (twice) and U rt V o p 1 / 2 ,  the coincident pair being the linear group velocity. If 
we fix p and take A sufficiently small these velocities, to next order, are 

where Y? = ( 3 + 6 p  + 6 p 2 + p 3 ) / 1 2 p l  and Y , = [ 8 p 1 / 2 r ( 1  + 3 p ) ] / 8 p 1 p 1 / 2 .  The dou- 
ble characteristic velocity of linear theory splits into two distinct real velocities C, and 
C-. Whitham (1974,§ 15.4) has suggested that such velocities be taken as the nonlinear 
group velocities. By contrast, there is no splitting in the cold plasma case because the 
nonlinear dispersion relation is amplitude independent. However, it remains true here 
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that there is no instability of the type associated with equations having an elliptic part. 
Hence slowly varying small perturbations on the uniform periodic solution do not grow 
exponentially with time (cf Infeld and Rowlands 1979). 

The characteristic velocities (13) were obtained on the assumption of fixed p and 
sufficiently small A .  Henceforth, therefore, it will not be possible to deduce cor- 
responding cold plasma results as the limiting case p + 0. 

4. Solution of the modulation equations 

We consider an initial problem for (7)-(10) satisfying 

N = f i ,  vo= Q O ( > O ) ,  U =  ri, A = p A ( X )  at T = 0, 

where fi, CO and fi are constant and p is the initial maximum value of A .  From ( 5 )  p 
satisfies 

/A <1-p*/3-8p'/4/3+2p*Ii2, (14) 

where p* is the initial value of p. 
Unlike the cold plasma problem, where an exact solution of the governing equations 

was found, we are here compelled to resort to an approximate solution, and since (14) 
implies that p is small (e.g. if p* = 0.5, p < 0.005 16) the strained coordinate technique 
based on small p is appropriate (see Nayfeh 1973, 8 3.2). For consistency p >>E (see 

We note first from (13) that the families of linear characteristics of the equations are 
0 3). 

to = x - (.G - Q o p * ) ~  = constant, 

4 0 * = ~ - ( r i *  Q o p * " 2 ) ~  =constant, 

Though it is not obvious, it turns out to be most convenient to use characteristic 
variables, 4+, 4-, given by 

in place of the independent variables X,  T. The coordinate straining is determined by 
new dependent variables X ,  T, which, together with all other dependent variables, are 
expanded in powers of p in the form 

A = pA(')(4+, qL) + . . . , 
x = X(O)(4+, 4-) + pxy(b+, &) + . * . I 

Substitution of these series into the equations (7)-(lo), (17) and the initial conditions 
applied at d+ = 4- = X yields a hierarchy of equations for the coefficients. 
Leading-order solution 
We find that N(O) = fi, U'') = fi, Vio) = and A(') = A([), where 

[(c,b+, &) = X(O)-- (0 - Pop*)T'o'. (18) 

Thus, to leading order, [ = constant is (15), the double characteristic corresponding to 
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the linear group velocity fi- Qo@. From (17) it follows that 

xiO) = [( 0 + Q I p 2 ) c $ -  - (0 - Q0p2)4+3/2  Qo.op'/2, 

T'O'= (4- - 4+) /2  Q0b1'*. 

First-order solution 
The corresponding results for the first-order functions are found to be 

N"' = fi[2d(5) - v-A(r$+) - ~+A(r$-)]/481b, 
U(')  = QO[v+A(d-) - u-.A(4+) -2p  *1/2 A(6)] /4$1p*' /~,  A 

vi'' = (1 + 3 6 )  u'')/2p* - Q0@/fi  - (4- - 4+) CO P:Ar(5)/2.0p3/2, 
x'"= ri(R++R-)/Qo+(R+ - R - ) p 2 ,  T"' = (R+ +R-)/ QO, 

where 

A"' is not calculated since it involves terms of O ( a i )  in the uniform solution. 

5, Discussion 

First we note that the solution for a cold plasma for A ,  and for example N, is (Parkes and 
Gribben 1978) 

A = CLm, N = fi + $&Q;T2dlr([), 

where 

( o = X -  0 T .  A 2  2 *  6 = 5o-$P VoT A'(51, 

For a symmetric initial profile the mid-point travels at the uniform velocity fi in the 
laboratory frame, and the distortion relative to the mid-point is symmetric for all T > 0. 

For a warm plasma we also consider trajectories of disturbances in the to - T plane 
(but with 60 = X - (0 - Q O ~ ) T ) ,  i.e. we work in a reference frame moving with the 
constant linear group velocity relative to the laboratory frame. In this plane the straight 
characteristics (16) have slopes (*Y* QOb1/*)-' respectively. Linear theory predicts that 
A propagates without distortion along the straight lines to = constant, whereas our 
corrected approximate solution A = FA((), where from (18) and (19) 

(20) 

says that A propagates along the curved lines 5 = constant so that the A profile becomes 
distorted. 

If we localise the initial profile, so that d ( X )  f 0 only in -L/2 < X < L/2 ,  we can say 
more about this distortion. Since 5 = to = X at T = 0, the profile propagates so that 
A # 0 only in the region D = ((60, T ) :  -L/2 < 6 < L/2, T > 0) in the r0-T plane. Now 

5 = 60 - p [ ( R +  - R-)p' /2  + (R+ + R-)P*], 
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of all the straight lines 40* = constant within Do = {(to, T ) :  - L / 2  < to < L / 2 ,  T > 0},  
those entering at TZ=T-, where Q o T - / L = ( v - p  ) , originated outside Do. 
Consequently, allowing for the slight curvature of the qL characteristics and of the 
boundaries 6 = * L / 2  of the A profile, we expect that for T b T- all c$* characteristics 
within D originated outside D. Hence, within D, A(q5*) = 0 and F(4,) are constant, so 
R+ and R- depend eventually on 5 only and the curves 5 = constant become straight 
lines parallel to, and displaced from, the linear characteristics to = constant. There- 
after, to first order in +, the distorted A profile propagates without further change. A 
measure of the distortion from the initial profile is to - 5, tabulated in table 1 for 6 = 0.5 
for the symmetric profile 

*1/2 -1 

(21)  
[4(0.5 +X)(0 .5  -X)/L214, -L/2 < x < L / 2 ,  

otherwise. 

Table 1. The values of (to-[) 2 lo6 are given,Acalculated from (20), for the initial profile 
given by (21), with fi  = 0.005, p = 0.5 and U/ Vo = 1.25. d(6)  is calculated from (22). 

A([)x106 7 839 3 429 5000 3429 839 I 

-0.15 0.00 0.15 0.30 0.45 

1 3690 9857 11 601 6662 1562 447 377 
2 21506 19610 8 802 2354 988 447 377 
3 22453 7560 3 327 2155 988 447 371 
4 5331 3863 3 322 2155 988 441 377 
5 3933 3863 3 322 2155 988 447 377 

d([)x106 1778 1708 1161 0 -1167 -1708 -1778 

Here poT-/L = 4.83 and so the table entries for poT-/L = 5 give the final distortion of 
the A profile to this order. Thus in the early stages the distortion is asymmetric and 
greatest at the trailing edge. Relative to the peak of the profile, the final distortion is 
measured by 

d ( t ) ~ t o - t - t o p = + [ ( P + + p - ) p * 1 / 2 + ( P + - P - ) 6 1 ~ ( 6 ) ,  (22)  

where to = top is the final trajectory of the peak and t o p =  to(,$ = 0). Since (21)  is 
symmetric, d ( - t )  = - d ( [ ) ,  the final distortion is symmetric and A propagates without 
further distortion at velocity 9-  Qop* in the laboratory frame. Note that for [BO, 
d ( 8 )  Z 0 for 

The contributions to N“’ and U“’ proportional to A([) behave as above, but those 
proportional to A(4+) and A(4-) propagate to right and left respectively along 
characteristics c$+ = constant, 4- = constant, which are curved, and so distortion occurs. 
For an initial profile like (21),  distortion persists even for times beyond that for which 
A(4+)  and A(&) have any effect in D. In the case of Vg),  propagation without 
distortion in D is never attained because of the term A’([). 

Finally, it is evident that the 4, characteristics provide the nonlinear coupling 
between the wavetrain and changes in the background quantities N, Vo and U (cf 
Whitham 1974, § 15.2). 

S 4 respectively. 
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